FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL STRESSES IN SHIELDED METAL ARC WELDING OF MILD STEEL PLATES

By

Author

Presented To

Department of Engineering

ABSTRACT
This study investigates the prediction of residual stresses developed in shielded metal arc welding of ASTM A36 mild steel platesvia simulation and experiments. The specific objectives were to simulate the shielded manual metal arc welding process by using the finite element method in ANSYS Multiphysics Version 14, to produce experimental samples of butt welded ASTM A36 mild steel plates, to determine the residual stresses developed in the weldment of the steel plates and those generated from the Finite Element Model Simulation, and to establish correlation between experimental and predicted values of residual stress. Findings indicate that the maximum temperature was 1827°C while that at the end of the plate was maintained at around 27°C. From the Finite Element Model Simulation, the transverse residual stress in the x direction (σx) had a maximum value of 375MPa (tensile) and minimum value of -183MPa (compressive) while in the y direction (σy), the maximum value of 172MPa (tensile) and minimum value of 0.The longitudinal stress in the x direction (σx) indicated a maximum value of 355MPa (tensile) and a minimum value of -10MPa (compressive) while in the y direction (σy), the maximum value was 167MPa and the minimum value of the residual stress was -375MPa. The experimental values as measured by the X-Ray diffractometer were similar as transverse residual stress (σx) along the weld line in the transverse x directionvaried from 353MPa (tensile) to -209MPa (compressive) while in the y direction, stress (σy) along the weld line varied from 177MPa (tensile) to 0. The longitudinal stress measured by the X-Ray diffractometer in the x direction (σx) varied from 339MPa (tensile) to 0 (compressive) while in the y direction (σy) varied from 171MPa (tensile) to -366MPa (compressive). The result of the correlation coefficient test between the experimental and finite element results of residual stresses the was close to unity (1) which indicates a positive uphill linear relationship. The result of the F-Test conducted was also close to unity (1) which indicates the level of variance between the experimental and finite element results of residual stresses was not significant. Based on these results, it was established that using the 3D FEM analysis, results of residual stresses obtained was in good agreement with the experiment.

PLEASE NOTE

This material is a comprehensive and well-written project, structured into Chapter (1 to 5) for clarity and depth.


To access the full material click the download button below


OR


Contact our support team via Call/WhatsApp: 09019904113 for further inquiries.

Thank you for choosing us!

About e-Project Material Centre


e-Project Material Centre is a web service aimed at successfully assisting final year students with quality, well-researched, reliable, and ready-made project work. Our materials are recent, complete (chapter 1 to Minimum of Chapter 5, with references), and well-written. INSTANT ACCESS! INSTANT DOWNLOAD. Simply select your department, choose from our list of topics available, and explore your data.

Why Students Love to Use e-Project Material?


Guaranteed Delivery: Getting your project delivered on time is essential. You cannot afford to turn in your project past the deadline. That is why you must get your project online from a company that guarantees to meet your deadline. e-Project Topics Material Centre is happy to offer instant delivery of projects listed on our website. We can handle just about any deadline you send our way. Satisfaction Guaranteed: We always do whatever is necessary to ensure every customer's satisfaction.

Disclaimer


e-Project Topics Material Centre will only provide projects as a reference for your research. The projects ordered and produced should be used as a guide or framework for your own project. The contents of the projects should help you generate new ideas and thoughts for your own project. It is the aim of e-Project Topics Centre to only provide guidance by which the projects should be pursued. We are neither encouraging any form of plagiarism nor are we advocating the use of the projects produced herein for cheating.

Terms and Conditions


Using our service is LEGAL and IS NOT prohibited by any university/college policies. You are allowed to use the original model papers you will receive in the following ways:
  • As a source for additional understanding of the subject
  • As a source for ideas for your own research (if properly referenced)
  • For PROPER paraphrasing (see your university definition of plagiarism and acceptable paraphrase) Direct citing (if referenced properly)
Thank you so much for your respect to the author's copyright.

Refund and Privacy Policy


  • Refunds: All sales are final. However, if you encounter any issues with accessing your purchased material, kindly contact our support team for immediate resolution.
  • Privacy Policy: Your personal information is protected and will not be shared with third parties. We ensure secure payment processing and data confidentiality.

Contact Information


X

Need Help Finding or Downloading Your Project Material?

If you don't see the topic you're looking for or You need urgent/express attention, click the WhatsApp Icon/link below to contact ADMIN and get the material you need instantly. We are always available online to attend to your needs. Thanks