EXPERIMENTAL INVESTIGATION OF FLOW CHARACTERISTICS OVER SEMI-CIRCULAR BROAD CRESTED WEIR MODELS

By

Author

Presented To

Department of Engineering

ABSTRACT
The overflow characteristics of semi-circular crested weir models were investigated. Twelve models were fabricated and tested. The models were categorized into two groups; normal weirs and oblique weir models. Both group of model had constant weir height and had the crest radius varied three times; 5cm, 7.5cm and 10cm. However, for the oblique weir, the oblique angle was varied three times; 60o , 30o and 15o . From experimental results, it was observed that for normal weirs, the coefficient of discharge (Cd) increases with corresponding increase in head to crest height ratio (h/P). There were increases in Cd by 3.75%, 3.11% and 3.12% for 5cm, 7.5cm and 10cm normal weirs respectively. However, the oblique weirs showed corresponding increases of (Cd) with the increase of (h/P) values; while the highest Cd values were obtained with weirs of small oblique angle (α =15o ) for all crest radius tested. There were increases in Cd values by 0.4%, 4.8% and 4.86% as the oblique angle was varied from 900 to 600 , 600 to 300 and 300 to 150 respectively. For normal weirs, the performance in terms of the discharge magnification factor (Qac/QNS) increases as (h/P) values increases. Hence, for all values of crest radius tested, normal weirs of semicircular crests had performance better than those of sharp crested weirs. While, for oblique weirs the performance in terms of the discharge magnification factor (Qac/QNS) increases with the increases in (h/P) values for all oblique weirs tested, hence, Weirs of small oblique angles give high discharge magnification factor and performance. Therefore, the model with radius 5cm and oblique angle 15o was selected as the most efficient with a discharge coefficient and magnification factor of 0.885 and 1.326 respectively. Expression for determining the flow rate over the semi-circular weir was developed through dimensional and regression analysis respectively. Similarly, linear and non-linear equations for estimating the discharge coefficients of the weir models were developed. It was found that the flow rate equation developed had correlation coefficient of 0.986 with maximum error of 1.4%. Also, the linear and non-linear equations developed had correlation coefficients of 0.664 and 0.574 with maximum errors of 33.5% and 42.6% respectively. Finally, the mathematical models developed for computing the discharge coefficient can be used for design of normal and oblique semi-circular crested weirs.

PLEASE NOTE

This material is a comprehensive and well-written project, structured into Chapter (1 to 5) for clarity and depth.


To access the full material click the download button below


OR


Contact our support team via Call/WhatsApp: 09019904113 for further inquiries.

Thank you for choosing us!

About e-Project Material Centre


e-Project Material Centre is a web service aimed at successfully assisting final year students with quality, well-researched, reliable, and ready-made project work. Our materials are recent, complete (chapter 1 to Minimum of Chapter 5, with references), and well-written. INSTANT ACCESS! INSTANT DOWNLOAD. Simply select your department, choose from our list of topics available, and explore your data.

Why Students Love to Use e-Project Material?


Guaranteed Delivery: Getting your project delivered on time is essential. You cannot afford to turn in your project past the deadline. That is why you must get your project online from a company that guarantees to meet your deadline. e-Project Topics Material Centre is happy to offer instant delivery of projects listed on our website. We can handle just about any deadline you send our way. Satisfaction Guaranteed: We always do whatever is necessary to ensure every customer's satisfaction.

Disclaimer


e-Project Topics Material Centre will only provide projects as a reference for your research. The projects ordered and produced should be used as a guide or framework for your own project. The contents of the projects should help you generate new ideas and thoughts for your own project. It is the aim of e-Project Topics Centre to only provide guidance by which the projects should be pursued. We are neither encouraging any form of plagiarism nor are we advocating the use of the projects produced herein for cheating.

Terms and Conditions


Using our service is LEGAL and IS NOT prohibited by any university/college policies. You are allowed to use the original model papers you will receive in the following ways:
  • As a source for additional understanding of the subject
  • As a source for ideas for your own research (if properly referenced)
  • For PROPER paraphrasing (see your university definition of plagiarism and acceptable paraphrase) Direct citing (if referenced properly)
Thank you so much for your respect to the author's copyright.

Refund and Privacy Policy


  • Refunds: All sales are final. However, if you encounter any issues with accessing your purchased material, kindly contact our support team for immediate resolution.
  • Privacy Policy: Your personal information is protected and will not be shared with third parties. We ensure secure payment processing and data confidentiality.

Contact Information


X

Need Help Finding or Downloading Your Project Material?

If you don't see the topic you're looking for or You need urgent/express attention, click the WhatsApp Icon/link below to contact ADMIN and get the material you need instantly. We are always available online to attend to your needs. Thanks