ABSTRACT
A study was carried out on soils sampled at 0-10, 10-20, and 20-30 cm depths from both
cultivated and uncultivated soils at four different locations (Awgu, Okigwe, Nsukka I, and
Nsukka II), to evaluate the potentials of various aggregate size fractions of varying soil textures
and depths to sequester carbon under different land uses. A 4 x 2 x 3 factorial experiment was
conducted in a completely randomized design (CRD). Factor A was location at four levels, while
factor B (land use) had two levels. Factor C (soil depth) comprised of three levels. Results
showed that in both land uses, soil texture varied with depth in each location and included clay,
loam, clay loam, sandy loam and sandy clay loam. Generally, all the soil properties varied with
soil depth across the locations and land uses. Land use significantly (P = 0.05) affected pH in
KCl, Ca2+, Al3+, CEC, 0.50-1.00 mm water stable aggregates (WSA), total soil nitrogen (TSN) in
1.00-2.00 mm WSA, and soil organic carbon (SOC) in 1.00-2.00 mm and < 0.25 mm WSA.
Cultivation at 0-30 cm depth significantly reduced SOC in 1.00-2.00 mm WSA by 19.30 %, and
TSN in 1.00-2.00 mm WSA by 2.50 %. Land use effects on SOC in WSA at 0-30 cm depth of
the various locations followed no consistent trend, except that SOC was higher in cultivated than
in uncultivated soils of Nsukka II location. The SOC pool significantly decreased with soil depth.
The SOC pool at 0-10 cm, 10-20 cm, and 20-30 cm depths averaged 17.62, 16.40 and 13.05 Mg
C ha-1 respectively, in cultivated soils; and 19.59, 17.86 and 12.03 Mg C ha-1 respectively, in
uncultivated soils.