DESIGN, SYNTHESIS, ANTIMALARIAL EVALUATION AND COMPUTATIONAL STUDIES OF SOME CHALCONE DERIVATIVES

By

Author

Presented To

Department of Pharmaceutical Sciences

ABSTRACT
Inspired by the previous findings on the structural requirements needed for good antimalarial activity by chalcones against Plasmodium proteases, seventeen chalcone derivatives were designed and synthesized using Claisen-Schmidt condensation of appropriate aldehydes and methyl ketones. The structures of these compounds were established using various spectroscopic techniques. Based on SciFinder search the compounds; P1, P2, P3, and P8 are new compounds not listed on any chemical data base. The synthesized chalcones were screened in mice against established P. berghii infection. Eleven compounds were active and P2 the most active compound exhibited significant percentage inhibition of 90.32% (p?0.05) at a dose of 100 mg/kg. An interesting observation was the demonstration of good antimalarial activity with the 3-quinolinyl A ring derivatives- P3, P4 and P8. The potential of the synthesized compounds to inhibit the synthesis of β-hematin was also evaluated but, only compounds P12 and P17 showed modest inhibition of β-hematin synthesis with percent inhibition of 59.28% and 49.04% respectively at a dose of 50 μg/kg. The prospects of dual inhibition of Plasmodium falciparum vital proteases; aspartic proteases (plasmepsin II and IV) and cysteine proteases (falcipain-2 and 3) of the seventeen chalcone derivatives was also investigated using in silico studies. Structure-based virtual screening using validated molecular docking revealed two potential hits (P3 and P4) with the best binding affinity and broad inhibition across all the proteases used. The crucial driving forces for receptor interaction and key interacting residues of the enzymes by the potential hits were established using molecular dynamics and binding free energy calculations. Simulation experiments revealed the stability of the docked ligands within all the enzymes. The ligands were found to interact with the residues at the active site and other sub-site regulating specificity for the falcipains system. With the plasmepsin systems, the ligands interact with the flap, covering the active site. From the different energetic contributions of the individual residues, it is evident that the binding process was principally favored by van der Waals and little affected by electrostatic energies while the polar solvation energy impaired it. With regard to the binding interactions, it appeared that the most contributing features of the ligands for receptor interactions are the quinoline ring, carbonyl group and 2- methoxy group. Therefore, the result from this work have identified quinolinyl chalcones with 2- methoxy substitution on ring B as potential candidates for further optimization as antimalarial against Plasmodium proteases.

PLEASE NOTE

This material is a comprehensive and well-written project, structured into Chapter (1 to 5) for clarity and depth.


To access the full material click the download button below


OR


Contact our support team via Call/WhatsApp: 09019904113 for further inquiries.

Thank you for choosing us!

About e-Project Material Centre


e-Project Material Centre is a web service aimed at successfully assisting final year students with quality, well-researched, reliable, and ready-made project work. Our materials are recent, complete (chapter 1 to Minimum of Chapter 5, with references), and well-written. INSTANT ACCESS! INSTANT DOWNLOAD. Simply select your department, choose from our list of topics available, and explore your data.

Why Students Love to Use e-Project Material?


Guaranteed Delivery: Getting your project delivered on time is essential. You cannot afford to turn in your project past the deadline. That is why you must get your project online from a company that guarantees to meet your deadline. e-Project Topics Material Centre is happy to offer instant delivery of projects listed on our website. We can handle just about any deadline you send our way. Satisfaction Guaranteed: We always do whatever is necessary to ensure every customer's satisfaction.

Disclaimer


e-Project Topics Material Centre will only provide projects as a reference for your research. The projects ordered and produced should be used as a guide or framework for your own project. The contents of the projects should help you generate new ideas and thoughts for your own project. It is the aim of e-Project Topics Centre to only provide guidance by which the projects should be pursued. We are neither encouraging any form of plagiarism nor are we advocating the use of the projects produced herein for cheating.

Terms and Conditions


Using our service is LEGAL and IS NOT prohibited by any university/college policies. You are allowed to use the original model papers you will receive in the following ways:
  • As a source for additional understanding of the subject
  • As a source for ideas for your own research (if properly referenced)
  • For PROPER paraphrasing (see your university definition of plagiarism and acceptable paraphrase) Direct citing (if referenced properly)
Thank you so much for your respect to the author's copyright.

Refund and Privacy Policy


  • Refunds: All sales are final. However, if you encounter any issues with accessing your purchased material, kindly contact our support team for immediate resolution.
  • Privacy Policy: Your personal information is protected and will not be shared with third parties. We ensure secure payment processing and data confidentiality.

Contact Information


X

Need Help Finding or Downloading Your Project Material?

If you don't see the topic you're looking for or You need urgent/express attention, click the WhatsApp Icon/link below to contact ADMIN and get the material you need instantly. We are always available online to attend to your needs. Thanks