Site Logo E-PROJECTTOPICS

INFLUENCE OF TIG PROCESS PARAMETERS ON HARDNESS, TENSILE STRENGTH AND MICROSTRUCTURES OF AISI430 FERRITIC STAINLESS STEEL WELDS


๐Ÿ“


Presented To


Engineering Department

๐Ÿ“„ Pages: 90       ๐Ÿง  Words: 12380       ๐Ÿ“š Chapters: 5 ๐Ÿ—‚๏ธ๏ธ For: PROJECT

๐Ÿ‘๏ธโ€๐Ÿ—จ๏ธ๏ธ๏ธ Views: 147      

โฌ‡๏ธ Download (Complete Report) Now!

ABSTRACT
The influence of tungsten inert gas (TIG) welding process parameters on the microstructural features and mechanical properties (hardness and tensile strength) of AISI430 ferritic stainless steel (FSS) welds based on the central composite design (CCD) approach, was investigated. The process parameters considered in this study include; the welding current (I), welding speed (S) and argon flow rate (AFR). The stainless steel AISI 430 FSS plates having chromium content of 17% Cr and 1.5mm thickness were butt-welded using autogenous tungsten inert gas welding process. The microstructures of the FSS welds were analyzed using optical microscope. The hardness and tensile strength were determined using Vickers's microhardness testing machine and Hounsfield tensile testing machine respectively. The results showed that all input variables considered have direct influence on the properties as well as the microstructure of the weldments. Microstructural result reveals ferrite structures aligned in the cold rolling direction for the base metal. The microstructure of the weld metal at the optimized condition shows the presence of equiaxed ferrite grains with some grain boundary marten site structures within the fusion and heat affected zones of the weldment. It was observed that welding current shows the greatest effect on the tensile strengthwith34% contribution, followed by the speed and argon flow rate with 15% and 2.54% respectively. For the hardness, the speed plays the major role. Empirical models were generated from the analysis to predict the weld quality. An optimized tensile strength and hardness of 431.014MPa and 307.10 HV respectively, were predicted at the welding current of 22A, the welding speed of 5mm/s and the argon flow rate of 10L/min. In order to validate the results, confirmatory experiments were performed based at the optimized condition and the test results were found to be in good agreement with the predicted values with percentage errors of 1.23% and 1.81% for the tensile strength and hardness respectively. Based on this finding, it can be concluded that the optimization of TIG input parameters using response surface methodology approach produced weld joint with good tensile strength and improved hardness that is very close to that of the base metal.

PLEASE NOTE

This material is a comprehensive and well-written project, structured into Chapter (1 to 5) for clarity and depth.


To access the full material click the download button below


OR


Contact our support team via Call/WhatsApp: 09019904113 for further inquiries.

Thank you for choosing us!

๐Ÿ“„ Pages: 90       ๐Ÿง  Words: 12380       ๐Ÿ“š Chapters: 5 ๐Ÿ—‚๏ธ๏ธ For: PROJECT

๐Ÿ‘๏ธโ€๐Ÿ—จ๏ธ๏ธ๏ธ Views: 147      

โฌ‡๏ธ Download (Complete Report) Now!

๐Ÿ”— Related Topics

INFLUENCE OF FINES CONTENT ON WATER AND CHEMICAL FLOWS THROUGH COMPACTED LATERITIC SOIL LINERS DEVELOPMENT OF SHEET STEEL GROUNDCOAT ENAMEL FROM LOCAL RAW MATERIALS SYNTHESIS OF IMMOBILIZED MOLYBDENUM CATALYST FOR OXIDATION PROCESSES MECHANICAL AND CORROSSION BEHAVIOUR OF LOW CARBON STEELIN CRUDE OIL INHIBITED BY SOME EXTRACTS OF Acacia Nilotica (GUM ARABIC TREE) PLANT THE COMPARISON OF SPEED, COST AND ACCURACY OF TRAVERSING USING EDM, ODM AND STEEL TAPE STRENGTH AND DURABILITY CHARACTERISTICS OF EARTHCRETE BLOCKS PROCESS DEVELOPMENT AND EQUIPMENT DESIGN FOR DEXTRIN MANUFACTURE FROM STARCH ASSESSMENT OF OIL EXTRACTS FROM TIGER NUT(Cyperus esculentus), WATER MELON (Citrullus vulgaris) and NEEM SEEDS (Azadirachta indica) AS CUTTING FLUIDS IN DRILLING OPERATION OF MILD STEEL PROBABILISTIC EVALUATION OF HORIZONTALLY CURVED ALUMINIUM ALLOY BRIDGE DECKS ON STEEL GIRDERS MODELLING AND OPTIMIZATION OF PID CONTROLLERโ€™s PARAMETERS FOR DEEP SPACE ANTENNA POSITIONING SYSTEM USING GENETIC ALGORITHM EFFECT OF PRE-AGEING THERMAL CONDITIONS ON THE HARDNESS, CORROSION RESISTANCE AND MICROSTRUCTURAL MORPHOLOGY OF ANTIMONY MODIFIED Al-Si-Mg ALLOY POTENTIAL OF CANE MOLASSES AS QUENCHING MEDIUM FOR (0.61%C) HIGH CARBON STEEL CHARACTERIZATION OF SOKOTO PHOSPHATE ROCK AND DESIGN OF PROCESS FLOWSHEET FOR ITS BENEFICIATION STUDIES ON TECHNOLOGICAL INTERVENTIONS TO UPGRADE SELECTED INDIGENEOUS FOOD PROCESSES STRENGTH PARAMETERS OF PIGMENTED CONCRETE STRENGTH OF CONCRETE COLUMN CONFINED BY PLASTIC PIPE (FYC) STRAIN-RATE INFLUENCE ON SHEAR STRENGTH CHARACTERISTICS OF COMPACTED FADAMA CLAY OPTIMUM DESIGN OF THE THICKNESS OF CARBON FIBRE REINFORCED POLYMER MATERIAL (CFRP) REQUIRED FOR STRENGTHENING OF DEFICIENT REINFORCED CONCRETE BEAM THE STUDY OF HARDENING CHARACTERISTICS OF HIGH CARBON STEELS AND DUCTILE CAST IRON DEVELOPMENT OF PILOT SIZE PROCESS FOR ZEOLITE Y AND ZSM-5 PRODUCTION FROM KANKARA KAOLIN

click on whatsapp