DESIGN, CONSTRUCTION AND SIMULATION OF MAIZE COBS FLUIDIZED BED COMBUSTOR

By

Author

Presented To

Department of Engineering

ABSTRACT
This study adopts the theory of fluidisation to design a combustor suitable for use in the rural communities of Nigeria. The Combustor, which will use sand particles as bed material, will burn maize cobs supplied at 5kg/h to generate heat energy for thermal applications including steam generation. Like most African countries, lack of adequate electricity supply in Nigeria has hampered economic activities, with less than 40% of the rural community connected to the national grid due to high cost of rural electrification exercise. Furthermore, the rural population continuously rely on direct burning of solid biomass (like fuel wood) as means of obtaining much needed heat energy for basic applications like cooking and heating, constituting an environmental nuisance. The study contends that using a bubbling fluidised bed combustor, it is possible to reduce energy poverty in the rural areas of Nigeria, while complying with the sustainable development goals. Chapter one discusses the background of the study, identifying the objectives, research problems, justification and scope of the work. Chapter two reviews the previous documentation on fluidised bed combustion including its history, principle of fluidization and advantage of fluidized beds over conventional methods of burning biomass. This chapter explains the theoretical background of the combustor and also introduces the Ergun 6.2 modeling software used in this work. The third chapter identifies the materials selected and the equations governing the design of the fluidised bed system. The simulation of the fluidised bed, construction procedure and equipment used are also defined in this chapter. Chapter four presents the result of the flue gas analysis, fluid bed and flue gas temperature measurements, with subsequent discussions. The fifth chapter summarizes and concludes the entire study. vii The temperatures of the fluid bed and flue gas during combustion were measured at 837 ºC and 220 ºC respectively using the MASTECH multipurpose clamp meter. The flue gas constituents were also analysed using the gas analyser which gave the concentrations of CO, NOx and SOx at 2ppm, 5ppm and 1ppm respectively.

PLEASE NOTE

This material is a comprehensive and well-written project, structured into Chapter (1 to 5) for clarity and depth.


To access the full material click the download button below


OR


Contact our support team via Call/WhatsApp: 09019904113 for further inquiries.

Thank you for choosing us!

About e-Project Material Centre


e-Project Material Centre is a web service aimed at successfully assisting final year students with quality, well-researched, reliable, and ready-made project work. Our materials are recent, complete (chapter 1 to Minimum of Chapter 5, with references), and well-written. INSTANT ACCESS! INSTANT DOWNLOAD. Simply select your department, choose from our list of topics available, and explore your data.

Why Students Love to Use e-Project Material?


Guaranteed Delivery: Getting your project delivered on time is essential. You cannot afford to turn in your project past the deadline. That is why you must get your project online from a company that guarantees to meet your deadline. e-Project Topics Material Centre is happy to offer instant delivery of projects listed on our website. We can handle just about any deadline you send our way. Satisfaction Guaranteed: We always do whatever is necessary to ensure every customer's satisfaction.

Disclaimer


e-Project Topics Material Centre will only provide projects as a reference for your research. The projects ordered and produced should be used as a guide or framework for your own project. The contents of the projects should help you generate new ideas and thoughts for your own project. It is the aim of e-Project Topics Centre to only provide guidance by which the projects should be pursued. We are neither encouraging any form of plagiarism nor are we advocating the use of the projects produced herein for cheating.

Terms and Conditions


Using our service is LEGAL and IS NOT prohibited by any university/college policies. You are allowed to use the original model papers you will receive in the following ways:
  • As a source for additional understanding of the subject
  • As a source for ideas for your own research (if properly referenced)
  • For PROPER paraphrasing (see your university definition of plagiarism and acceptable paraphrase) Direct citing (if referenced properly)
Thank you so much for your respect to the author's copyright.

Refund and Privacy Policy


  • Refunds: All sales are final. However, if you encounter any issues with accessing your purchased material, kindly contact our support team for immediate resolution.
  • Privacy Policy: Your personal information is protected and will not be shared with third parties. We ensure secure payment processing and data confidentiality.

Contact Information


X

Need Help Finding or Downloading Your Project Material?

If you don't see the topic you're looking for or You need urgent/express attention, click the WhatsApp Icon/link below to contact ADMIN and get the material you need instantly. We are always available online to attend to your needs. Thanks