ADSORPTION AND PHOTOCATALYTIC DEGRADATION OF ACETAMINOPHEN USING ZnFe2O4-TiO2 COMPOSITE

By

Author

Presented To

Department of Engineering

ABSTRACT
Frequent occurrence of pharmaceutical compounds in aquatic environments and drinking water has raised a concern about their potential effects on environment and human health. Advanced oxidation processes (AOPs) including heterogeneous photocatalysis have proved to be one of the most effective methods for water treatment. The coupling of TiO2 and ZnFe2O4 semiconductors results in a composite having high photocatalytic activity under solar and/or visible light irradiation. Thus, ZnFe2O4-TiO2 composite was synthesized using microwave assisted combustion method. The ZnFe2O4-TiO2 composite was characterized using XRF, XRD and SEM techniques. Adsorption of acetaminophen in the dark onto the ZnFe2O4-TiO2 composite nicely fitted pseudo second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity of the ZnFe2O4-TiO2 composite was 26.88 mgg−1. Control experiments showed that the percentage removal of acetaminophen via adsorption in the dark, photolysis (irradiation with visible light) and photocatalysis were 35%, 4% and 88%, respectively. The kinetics of photocatalytic degradation of acetaminophen under visible light irradiation using the ZnFe2O4-TiO2 composite obeys pseudo-first order approximation of the Langmuir-Hinshelwood kinetic model. Quadratic model equations that adequately describe photocatalytic degradation and mineralization of acetaminophen were developed using RSM (response surface methodology). The significant photocatalytic process parameters were: initial concentration of acetaminophen, dosage of ZnFe2O4-TiO2 composite (photocatalyst) and irradiation time. Numerical optimization of the process parameters was carried out for photocatalytic degradation and mineralization of acetaminophen. The predicted optimum conditions for photocatalytic degradation of acetaminophen were initial acetaminophen concentration of 11.0 mg/l, photocatalyst dosage of 0.6 g/L and irradiation time of 42.0 min. The predicted optimum conditions for photocatalytic mineralization of acetaminophen were initial acetaminophen concentration of 11.2 mg/l, photocatalyst dosage of 1.0 g/L and irradiation time of 28.7 min. Under the predicted optimum conditions, photocatalytic degradation and mineralization of acetaminophen were 91.5% and 96.3% respectively. The validated experiments for photocatalytic degradation and mineralization of acetaminophen were 90.9% and 95.9 %, respectively.

PLEASE NOTE

This material is a comprehensive and well-researched project, structured into
(1 - 5) chapters for clarity and depth.


To access the full content:

Click the Download Button Below

Or contact our support team via Call/WhatsApp: 09019904113 for further inquiries.

Thank you for choosing us!

About E-Project Material Centre


E-Project Material Centre is a web service aimed at successfully assisting final year students with quality, well researched, reliable and ready made project work. Our materials are recent, complete (chapter 1 to Minimum of Chapter 5, with references) and well written.INSTANT ACCESS! INSTANT DOWNLOAD. Simply select your department, choose from our list of topics available and explore your data

Why Students Love to Use E-Project Material ?


Guaranteed Delivery Getting your project delivered on time is essential. You cannot afford to turn in your project past the deadline. That is why you must get your project online from a company that guarantees to meet your deadline. e-Project Topics Material Centre is happy to offer instant delivery of projects listed on our website. We can handle just about any deadline you send our way. Satisfaction Guaranteed We always do whatever is necessary to ensure every customer's satisfaction

Disclaimer


E-Project Topics Material Centre will only provide projects as a reference for your research. The projects ordered and produced should be used as a guide or framework for your own project. The contents of the projects should be able to help you in generating new ideas and thoughts for your own project. It is the aim of e-Project Topics Centre to only provide guidance by which the projects should be pursued. We are neither encouraging any form of plagiarism nor are we advocating the use of the projects produced herein for cheating.

Terms and Condition


Using our service is LEGAL and IS NOT prohibited by any university/college policies You are allowed to use the original model papers you will receive in the following ways:
  • As a source for additional understanding of the subject
  • As a source for ideas for you own research (if properly referenced)
  • For PROPER paraphrasing ( see your university definition of plagiarism and acceptable paraphrase) Direct citing ( if referenced properly)
Thank you so much for your respect to the authors copyright
X

Need Help Finding or Downloading Your Project Material?

If you don't see the topic you're looking for or You need urgent/express attention, click the WhatsApp Icon/link below to contact ADMIN and get the material you need instantly. We are always available online to attend to your needs. Thanks