DETERMINATION OF AN IMPROVED SPECTRUM SENSING THRESHOLD FOR COGNITIVE RADIO USING SMOOTHED PSEUDO WIGNER-VILLE DISTRIBUTION

By

Author

Presented To

Department of Engineering

ABSTRACT
Cognitive radio (CR) has been suggested as the solution to spectrum scarcity due to the fixed allocation employed worldwide by regulatory bodies.A secondary usercan opportunistically access the licensed frequency bands without causing harmful interference to the licensed user. In order to avoid interference to a primary user signal,the CR has to be aware about the spectrum usage inthe geographic area in which it wants to operate. The process of spectrumsensing is a fundamental task for obtaining this awareness and the result of this process determines the successful operation of cognitive radio. Energy detection is one of the methods of spectrum sensing with the lowest computational complexity but with low performance at low signal to noise ratio. Exploring energy detection has led to the application of many techniques one of which is the use of time-frequency analysis. This method employs distribution techniques for analyzing the energy spectral density of an observed signal with a view to setting a sensing threshold. However, the distribution techniques that were used in literature suffered from the problem of cross-terms which affect the analysis of the resulting distribution thereby leading to poor sensing performance at low signal-to-noise ratio. Smoothed pseudo Wigner-Ville distribution (SPWVD) of the time-frequency analysis has been employed in this work to reduce the effect of cross-terms and a better sensing threshold was gotten validated through comparison with the existing work which employed pseudo Wigner-Ville Distribution (PWVD) with an average reduction of 2.7% and 3% for additive white Gaussian noise (AWGN) channel, 4.1% and 4.7% for Rician channel, 6.4% and 8% for Rayleigh channel in the probabilities of missed detection and false alarm respectively. These results showed that significant reduction was achieved using SPWVD to set threshold. This work was carried out using the MATLAB R2013b time-frequency tool box.

PLEASE NOTE

This material is a comprehensive and well-written project, structured into Chapter (1 to 5) for clarity and depth.


To access the full material click the download button below


OR


Contact our support team via Call/WhatsApp: 09019904113 for further inquiries.

Thank you for choosing us!

About e-Project Material Centre


e-Project Material Centre is a web service aimed at successfully assisting final year students with quality, well-researched, reliable, and ready-made project work. Our materials are recent, complete (chapter 1 to Minimum of Chapter 5, with references), and well-written. INSTANT ACCESS! INSTANT DOWNLOAD. Simply select your department, choose from our list of topics available, and explore your data.

Why Students Love to Use e-Project Material?


Guaranteed Delivery: Getting your project delivered on time is essential. You cannot afford to turn in your project past the deadline. That is why you must get your project online from a company that guarantees to meet your deadline. e-Project Topics Material Centre is happy to offer instant delivery of projects listed on our website. We can handle just about any deadline you send our way. Satisfaction Guaranteed: We always do whatever is necessary to ensure every customer's satisfaction.

Disclaimer


e-Project Topics Material Centre will only provide projects as a reference for your research. The projects ordered and produced should be used as a guide or framework for your own project. The contents of the projects should help you generate new ideas and thoughts for your own project. It is the aim of e-Project Topics Centre to only provide guidance by which the projects should be pursued. We are neither encouraging any form of plagiarism nor are we advocating the use of the projects produced herein for cheating.

Terms and Conditions


Using our service is LEGAL and IS NOT prohibited by any university/college policies. You are allowed to use the original model papers you will receive in the following ways:
  • As a source for additional understanding of the subject
  • As a source for ideas for your own research (if properly referenced)
  • For PROPER paraphrasing (see your university definition of plagiarism and acceptable paraphrase) Direct citing (if referenced properly)
Thank you so much for your respect to the author's copyright.

Refund and Privacy Policy


  • Refunds: All sales are final. However, if you encounter any issues with accessing your purchased material, kindly contact our support team for immediate resolution.
  • Privacy Policy: Your personal information is protected and will not be shared with third parties. We ensure secure payment processing and data confidentiality.

Contact Information


X

Need Help Finding or Downloading Your Project Material?

If you don't see the topic you're looking for or You need urgent/express attention, click the WhatsApp Icon/link below to contact ADMIN and get the material you need instantly. We are always available online to attend to your needs. Thanks