DEVELOPMENT OF A DYNAMIC OUTPUT-FEEDBACK REGULATOR FOR STABILIZATION AND TRACKING OF NON-SQUARE MULTI-INPUT MULTI-OUTPUT SYSTEMS

By

Author

Presented To

Department of Engineering

ABSTRACT
This research work is aimed at the development of an observer-based dynamic output feedback controller for stabilization and tracking of nonlinear systems. The developed controller is designed after the immersion-invariance and internal model principle (IMP) frameworks and targets non-square systems such as rotational-translational actuator (RTAC), cart-driven inverted pendulum (CIP) and quadrotor unmanned aerial vehicle (UAV). However non-square multiple-input multiple-output (MIMO) systems such as the UAV represented the principal system of choice for their structural properties. Non-square MIMO systems are systems that have more inputs than outputs (over-actuated) or vice-versa (under-actuated) and reflect the structures of many real world systems. The developed immersion invariance error feedback control law(IIEFCL) is used to solve stabilization and robust tracking problems of non-square MIMO non-linear systems. The output feedback internal model based observer is developed and tested with the RTAC, CIP and UAV while the immersion invariance stabilizing controller is developed and tested on the RTAC system. The output feedback controller showed good stability response on the selected models while the immersion invariance method displayed a good transient phase stability and tracking results with the addition of a robust state feedback feature to the underlying controller. The obtained settling times for the output feedback stabilization results were 2.7s, 1.113s and 0.6435s respectively for the three systems. The immersion-invariance control law acting as a robustifier to another controller produced zero percent overshoot and tracking error. The results showed attainment of desired stability and tracking and also quick convergence, disturbance rejection and handling of transient oscillations such as finite time escape or transient instability phenomena, from which many nonlinear systems do not recover after they occur. The IIEFCL was developed for the Quadrotor UAV and the results obtained were compared with some other standard nonlinear controllers that have been used in QUAV control. The metric for comparison was the integral of the squared control input (ISCI) signal. Results obtained compared favourably with existing nonlinear control laws. The IIEFCL showed the most improvement of 92.92% improvement over the backstepping conviii trol law, it had a 72.92% improvement over the feedback linearization control law and the least improvement was with respect to the sliding mode control law where only 66.225% improvement was recorded. Simulations were made using Matlab/Simulink and embedded C++ tools.

PLEASE NOTE

This material is a comprehensive and well-researched project, structured into
(1 - 5) chapters for clarity and depth.


To access the full content:

Click the Download Button Below

Or contact our support team via Call/WhatsApp: 09019904113 for further inquiries.

Thank you for choosing us!

About E-Project Material Centre


E-Project Material Centre is a web service aimed at successfully assisting final year students with quality, well researched, reliable and ready made project work. Our materials are recent, complete (chapter 1 to Minimum of Chapter 5, with references) and well written.INSTANT ACCESS! INSTANT DOWNLOAD. Simply select your department, choose from our list of topics available and explore your data

Why Students Love to Use E-Project Material ?


Guaranteed Delivery Getting your project delivered on time is essential. You cannot afford to turn in your project past the deadline. That is why you must get your project online from a company that guarantees to meet your deadline. e-Project Topics Material Centre is happy to offer instant delivery of projects listed on our website. We can handle just about any deadline you send our way. Satisfaction Guaranteed We always do whatever is necessary to ensure every customer's satisfaction

Disclaimer


E-Project Topics Material Centre will only provide projects as a reference for your research. The projects ordered and produced should be used as a guide or framework for your own project. The contents of the projects should be able to help you in generating new ideas and thoughts for your own project. It is the aim of e-Project Topics Centre to only provide guidance by which the projects should be pursued. We are neither encouraging any form of plagiarism nor are we advocating the use of the projects produced herein for cheating.

Terms and Condition


Using our service is LEGAL and IS NOT prohibited by any university/college policies You are allowed to use the original model papers you will receive in the following ways:
  • As a source for additional understanding of the subject
  • As a source for ideas for you own research (if properly referenced)
  • For PROPER paraphrasing ( see your university definition of plagiarism and acceptable paraphrase) Direct citing ( if referenced properly)
Thank you so much for your respect to the authors copyright
X

Need Help Finding or Downloading Your Project Material?

If you don't see the topic you're looking for or You need urgent/express attention, click the WhatsApp Icon/link below to contact ADMIN and get the material you need instantly. We are always available online to attend to your needs. Thanks